

Institute of Integrated Sensor Systems

Dept. of Electrical Engineering and Information Technology

Automatic Recognition of Door Keys

Naser Damer September, 2009

Prof. Dr.-Ing. Andreas König M.Sc. Kuncup Iswandy

Overview

- Introduction
- Image Acquisition
- Image Enhancement
- Solutions
 - Classification based on Moments
 - Correlation of the Chain Code
 - Image Correlation
 - Conclusions

Introduction

- The goal of this project is to design an automatic doorkey recognition system that recognizes a key model based on its image
- Knowledge base of the system is derived from key images in the manufacturer datasheet

Image Acquisition (1)

- Train image was taken from the key manufacturer datasheet by simple document scanning
- Test images of the keys were taken using digital camera under LED ring light
- Both Train and Test images were preprocessed then classified in QuickCog
 Automatic
 Steppede arlegen
 Ausschrifte festlegen
 Steppede arlegen

Image Acquisition (2)

• Using LED ring lightning applied as side lightning on the key helped to reduce shadows in the image and showed the key print more clearly as a darker area. On the contrary, using top lightning caused shadows around the key and produced a brighter areas in the key print that effect the quality of the binarized image later on

Image Enhancement and Reconstruction (1)

• The train image (containing 140 keys) was divided into separate images, one for each key. the white writing in the key was manually filled and the images were binarized under Matlab, labeled and saved in bitmap format

Image Enhancement and Reconstruction (2)

• The test images taken under LED ring light where manually resized then converted to grey image, binarized and reconstructed under Matlab

Solutions

- 1. Classification based on the Moments of the key image under QuickCog
- 2. Correlation of the Chain Code extracted from the key image edge under Matlab
- 3. Image Correlation between the test key images and datasheet image under Matlab

Classification Based on Moments (1)

• Moments are a description of the image structure and intensity and can be modified to be translation, scale and rotation invariant

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Morenten XI	мом
Invarianten,	Ordnung:
	 Translationsinvarianten Skalierungsinvarianten
	Rotationsinvarianten
	OK Abbrechen

Classification Based on Moments (2)

- Using the moments as a feature for classification gave poor results when tested with virtual test images and no correct results when tested with the real test images
- Problem in auto selection of features (global selection) with one image per class

Sensor Signal Processing

Correlation of the Chain Code (1)

- Chain Code is a description of objects that assigns a position indicator to each edge pixel with respect to the previous edge pixel
- The edge of binary key images from train and test was extracted using Sobel operator under Matlab

Correlation of the Chain Code (2)

• Correlation was used to measure the degree of similarity between the Chain Codes of test and train

$$\{\dots 4 5 5 5 3 3 5 6 7 7 6 6 \dots\}$$

Sum(dot product)

Max(Sum((C1-mean(C1)).(C2-mean(C2)))/sqrt(sum(C2-mean(C2))^2)

Image Correlation (1)

• Image Correlation was used to find the most similar part of the datasheet image to the test image

$$Correlation Coefficient = \frac{\sum_{i} \sum_{j} [F(x_{i}, x_{j}) - \overline{F}] [G(x_{i}^{*}, x_{j}^{*}) - \overline{G})]}{\sqrt{\sum_{i} \sum_{j} [G(x_{i}^{*}, x_{j}^{*}) - \overline{G})]^{2} [F(x_{i}^{*}, x_{j}^{*}) - \overline{F})]^{2}}} \in [0,1]$$

Sensor Signal Processing

Image Correlation (2)

- The upper common round part of the keys was discarded to enhance discrimination between keys and both train and test images are downsized to optimize execution time (execution time down to 2 sec)
- A black rectangle representing the highest match area is drawn in the train key set image and around the corresponding model number in a similar set of model

numbers

Image Correlation Results (1)

Key number 183

1	2	5	6	7	8	9	10	11	12	13	14				
15	6	19	20	21	22	23	24	31	32	35	36				
37	38	39	40	41	42	41a	42a	43	44	45	46				
49	50	51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
77	78	81	82	83	84	83b	84b	85	86	91	92	93	94	95	96
9 7	98	99	100	101	102	105	106	109	110	111	112	115	116	121	122
125	126	129	130	143	144	145	146	157	158	161	162	167	168	171	172
173	174	183	184	215	216	217	218	233	234	235	236	245	246	149	250
251	252	263	264	271	272	273	274	285	286	267	288				

Correlation Coefficient: 0.7688 Second highest Corr. Coeff.: 0.7188

Image Correlation Results (2)

Key number 274

 77

 97

 97

 97

 125

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25

 25
 </tr

1	2	5	6	7	8	9	10	11	12	13	14				
15	6	19	20	21	22	23	24	31	32	35	36				
37	38	39	40	41	42	41a	42a	43	44	45	46				
49	50	51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
77	78	81	82	83	84	83b	84b	85	86	91	92	9 3	94	95	96
97	98	99	100	101	102	105	106	109	110	111	112	115	116	121	122
125	126	129	130	143	144	145	146	157	158	161	162	167	168	171	172
173	174	183	184	215	216	217	218	233	234	235	236	245	246	149	250
251	252	263	2 6 4	271	272	273 2	274	285	286	287	288		С	or	relation
	Lec.				1012	3	ĸ	5	1	×.	z	2	C	oe	fficient:
	Z			5	¢					00	1000			0	.7570
d.		F			4			1	83	1				Se	econd
5			۵,	a Ì	Ľ	- 7	'3	27	14		28	}		hi	ighest
48	b r	Ħ	2	83	-					8			\mathbf{C}	111	Cooff
)[[
														0.	.7400

Image Correlation Results (3)

Strange Key(not included) System Message: "Correlation Coefficient is low, this solution is rejected"

1	2	5	6	7	8	9	10	11	12	13	14				
15	6	19	20	21	22	23	24	31	32	35	36				
37	38	39	40	41	42	41a	42a	43	44	45	46				
49	50	51	52	53	54	55	56	57	58	59	60				
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
77	78	81	82	83	84	83b	84b	85	86	91	92	93	9 4	95	96
97	98	99	100	101	102	105	106	109	110	111	112	115	116	121	122
125	126	129	130	143	144	145	146	157	158	161	162	167	168	171	172
173	174	183	184	215	216	217	218	233	234	235	236	245	246	149	250
251	252	263	264	271	272	273 2	274	285	286	267	288				

25 25 25 25 25 similar key print そプヒケイケイ achieved a Corr. Coeff. of 0.6140 Correlation Coefficient: 1/3 17 0.7253 Second highest 25 251 をえをえをえ をえてき ちち どら とら Corr. Coeff.: 252525523 0.6850

Visually most

Prof. Dr.-Ing. Andreas König

Conclusion

- The solution using image correlation gave correct results for 2 of the 3 test keys (only 3 keys where available for testing). It should be noted however that the wrongly classified key is not included in the search data and the rejection of the result was pointed out in a system warning message
- In the case of having test data which is different in nature from train data, one must try to enhance both toward a common similar nature
- Image Acquisition conditions may have a major effect later in the classification procedure

Automatic Recognition of Door Keys

Thank You

Sensor Signal Processing

